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ABSTRACT:

Supervised machine learning needs high quality, densely sampled and labelled training data. Transfer learning (TL) techniques have
been devised to reduce this dependency by adapting classifiers trained on different, but related, (source) training data to new (target) data
sets. A problem in TL is how to quantify the relatedness of a source quickly and robustly, because transferring knowledge from unrelated
data can degrade the performance of a classifier. In this paper, we propose a method that can select a nearly optimal source from a large
number of candidate sources. This operation depends only on the marginal probability distributions of the data, thus allowing the use of
the often abundant unlabelled data. We extend this method to multi-source selection by optimizing a weighted combination of sources.
The source weights are computed using a very fast boosting-like optimization scheme. The run-time complexity of our method scales
linearly in regard to the number of candidate sources and the size of the training set and is thus applicable to very large data sets. We
also propose a modification of an existing TL algorithm to handle multiple weighted training sets. Our method is evaluated on five
survey regions. The experiments show that our source selection method is effective in discriminating between related and unrelated
sources, almost always generating results within 3% in overall accuracy of a classifier based on fully labelled training data. We also
show that using the selected source as training data for a TL method will additionally result in a performance improvement.

1. INTRODUCTION

Supervised classification plays an important role for extracting
semantic information from remote sensing imagery. From statis-
tical considerations it can be expected that the estimation of any
complex model with high accuracy will require large amounts of
training data. While unlabelled data are abundant and are already
used successfully in unsupervised and semi-supervised learning
methods, they cannot completely replace the dependence on la-
belled data. The acquisition of high-quality, densely sampled and
representative labelled samples, on the other hand, is expensive
and a time consuming task. Transfer Learning (TL) is a paradigm
that strives to vastly reduce the amount of required training data
by utilizing knowledge from related learning tasks (Thrun and
Pratt, 1998; Pan and Yang, 2010). In particular, the aim of TL

is to adapt a classifier trained on data from a source domain to a
target domain. The only assumption to be made is that these do-
mains are different but related. We are interested in one specific
setting of TL called domain adaptation (DA). DA methods assume
the source and target domains to differ only by the marginal distri-
butions of the features and the posterior class distributions (Bruz-
zone and Marconcini, 2009). The performance of DA depends on
how the source is related to the target (Eaton et al., 2008). From
that point of view, DA can be divided into two steps: find the most
similar sources and transfer knowledge from these sources to the
target. In this context, the major challenge in source selection is
how to measure the similarity. This is important to avoid negative
transfer, i.e. a reduction in accuracy compared to not transferring
any knowledge at all (Pan and Yang, 2010).

In this paper we will address the problems of searching for sim-
ilar sources, also known as source selection and of integrating
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the results into DA. As unlabelled data are abundant, our pro-
posed method is only based on similarity measurement between
the marginal distributions of source and target domains. Given
a target domain and a list of candidate source domains, we as-
sign weights to these sources on the basis of the Maximum Mean
Discrepancy metric to the target. We apply multi-source selec-
tion by transferring knowledge from multiple weighted source
domains simultaneously. Additionally, we adapt our approach
for DA presented in (Paul et al., 2016) so that it can benefit from
multi-source selection. We evaluate our method on the Vaihingen
and Potsdam datasets from the ISPRS 2D semantic labelling chal-
lenge (Wegner et al., 2016) and on a third, even more challenging,
dataset based on aerial imagery of three German cities.

2. RELATED WORK

In our work we use notation according to Pan and Yang (2010).
A domain D = {X , P (X)} consists of a feature space X and a
marginal probability distribution P (X) with X ∈ X . A task for
a given domain is defined as T = {C, h(·)}, consisting of label
space C and a predictive function h(·). The predictive function
can be learned from the training data {xr, Cr}, where xr ∈ X
andCr ∈ C. We consider a target T , for which we want to learn a
predictive function h(x), and source S, from which some knowl-
edge can be transferred. Both T and S are fully described by
their domains and their tasks. In our work we consider at least
one source domain DS and only one target domain DT . There
are different settings of TL. Our focus is on DA, which is a spe-
cial sub-category of the transductive TL setting (Pan and Yang,
2010). There are slightly different definitions of the DA problem
(Paul et al., 2016). We follow the definition of Bruzzone and
Marconcini (2009) according to which different domains only



differ by the marginal distributions of the features and the pos-
terior class distributions, i.e. we assume P (XS) 6= P (XT ) and
P (CS |XS) 6= P (CT |XT ). From that point of view, DA cor-
responds to a problem where the source and target domain data
are different, e.g. due to different lighting conditions or seasonal
effects; the domains must be related, i.e. these differences must
not be so large that transfer becomes impossible. In this sce-
nario, finding a solution to the DA problem would allow to trans-
fer a classifier trained on one set of images where training data
are available (DS) to other images (DT ) without having to pro-
vide additional training data in DT . This is different from the
problem that the training set is non-representative, e.g. due to
class imbalance. Such algorithms are known as sample selec-
tion bias or covariate shift correcting methods, as in (Zadrozny,
2004; Sugiyama et al., 2007). Zhang et al. (2010) adapted the
classifier to the distribution of the target data by weighing train-
ing samples with a probability ratio of data from the source and
target domains. However, this approach only deals with binary
problems and other applications than image classification.

Pan and Yang (2010) categorize DA in two groups according to
what is actually transferred. Methods of the first group using
feature representation transfer assume that the differences be-
tween domains can be mitigated by projecting both domains into
a shared feature space in which the differences between the mar-
ginal feature distributions are minimized, e.g. by using feature
selection (Gopalan et al., 2011) or feature extraction (Matasci et
al., 2015). Some of the methods in this category are driven by a
graph matching procedure to find correspondences between do-
mains (Tuia et al., 2013; Banerjee et al., 2015). These methods
need to contain the correct matching sequence among the possi-
ble matches or labelled samples across domains to perform well.
Cheng and Pan (2014) propose a semisupervised method for DA

that uses linear transformations for feature representation trans-
fer. However, this method also requires training data from the tar-
get domain. Methods that assume that differences can be found
in the marginal distributions mostly fall into the second group of
DA algorithms, based on instance transfer. They try to directly
re-use training samples from the source domain, successively re-
placing them by samples from the target domain that receive their
class labels (semi-labels) from the current state of the classifier.

Methods for instance transfer have been used in the classification
of remotely sensed data, e.g. in (Acharya et al., 2011). Acharya
et al. (2011) train the classifier on the basis of the source domain
and combine the result with the results of several clustering al-
gorithms to obtain improved posterior probabilities for the target
domain data. The approach is based on the assumption that the
data points of a cluster in feature space probably belong to the
same class. Bruzzone and Marconcini (2009) present a method
for DA based on instance transfer for Support Vector Machines
(SVM). In (Paul et al., 2016), we adopted that principle for DA

based on logistic regression, thus a simpler classifier which, nev-
ertheless, may have a lower computational complexity in train-
ing, not least because it can be applied to multiclass problems in
a straight-forward way. Durbha et al. (2011) show that methods
of TL for classification of remotely sensed images can produce
better results than a modification of the SVM. A DA method using
logistic regression in a semi-supervised setting combined with
clustering of unlabelled data has been presented in (Amini and
Gallinari, 2002). Training is based on expectation maximisation
(EM), and the semi-labels of the unlabelled data are determined
according to the cluster membership of EM. In contrast to our
DA technique, that method assumes the labelled and the unla-
belled data to follow the same distribution. Our previous method

was shown to achieve a positive transfer for many image pairs of
similar domains, but there were problematic cases with negative
transfer (Paul et al., 2016). The major problem was that it could
not detect cases in which the general assumption of TL, namely
that the domains have to be related, was violated.

The detection of negative transfer is of vital importance for TL.
In (Bruzzone and Marconcini, 2010) a circular validation scheme
was proposed to detect negative transfer after adapting the clas-
sifier. An alternative approach would try to detect a relevant
source prior to applying TL, which is known as source selection,
which, of course, requires the availability of multiple source do-
mains. Most work in this area uses a distance measure between
the marginal distributions to measure the similarity between do-
mains. Such distribution distances are well known in statistics,
where the problem is mostly solved for 1D feature spaces. Most
research has therefore focussed on extending these metrics to
multivariate data or to non-parametric models. Examples for such
measures are the Kullback-Leibler Divergence (Sugiyama et al.,
2007), the Total-Variation Distance (Sriperumbudur et al., 2012)
and its approximations, the Maximum-Mean-Discrepancy (Gret-
ton et al., 2012; Chattopadhyay et al., 2012; Matasci et al., 2015)
and A-Distance (Ben-David et al., 2007). These approaches are
kernel-based and usually scale well to high-dimensional data, but
they may be computationally expensive. Therefore, another focus
of research has been on reducing computational requirements and
an improved regularization by careful kernel tuning (Zaremba
et al., 2013; Sriperumbudur et al., 2009). Chattopadhyay et al.
(2012) proposed a multi-source DA algorithm for the detection of
muscle fatigue from surface electromyography (SEMG) data. The
data show a high variability between individual subjects, there-
fore not all subject data should be considered when learning an
individualized fatigue detector for a new subject. A synthesized
source is generated as a weighted combination of all candidate
sources using a MMD-based domain distance. The method has
cubic complexity in the number of candidate sources, which may
make it slow for cases with many available sources.

In this paper, we present two methods for source selection based
on two different distance metrics for domains. It is inspired by
(Chattopadhyay et al., 2012), but we use an approximate opti-
mization with linear run-time complexity and propose a method
for tuning the kernel hyperparameter automatically. The methods
deliver a synthetic source as a weighted combination of similar
sources, designed to avoid negative transfer. Furthermore, we ex-
pand the algorithm in (Paul et al., 2016) so that it can deal with
multiple sources. By selecting suitable source domains, it should
be possible to achieve a positive transfer for most target domains.

3. DOMAIN ADAPTATION

We start this section with a short description of our previous work
(Paul et al., 2016) before presenting improvements in section 3.2.

3.1 DA approach

We use multiclass logistic regression (LR) as our base classifier.
LR directly models the posterior probability P (C | x) of the class
labels C given the data x. We transform features into a higher-
dimensional space Φ(x) in order to achieve non-linear decision
boundaries. In the multiclass case, the model of the posterior is
based on the softmax function (Bishop, 2006):

p
(
C = Ck|x

)
=

exp
(
wTk · Φ(x)

)∑
j

exp
(
wTj · Φ(x)

) , (1)



where wk is a parameter vector for a particular class Ck, k ∈ K,
to be determined in the training process. For that purpose, a train-
ing data set, denoted as TD, is assumed to be available. Initially,
it contains only training samples from the source domain, each
consisting of a feature vector xn, its class label Cn and a weight
gn. In the initial training, we use gn = 1,∀n ∈ {1, .., N}, but
in the DA process, the samples will receive individual weights in-
dicating the algorithm’s confidence in the labels. In training, the
optimal values of w given TD are determined by optimizing the
posterior (Vishwanathan et al., 2006):

p
(
w|TD

)
∝ p (w) ·

∏
n,k

p
(
Cn = Ck|xn,w

)gn·qnk
, (2)

where qnk is 1 if Cn = Ck and 0 otherwise, p
(
C = Ck|xn,w

)
is defined in Eq. (1) and p(w) is a Gaussian prior with mean w̄
and standard deviation σ. Compared to standard multiclass LR,
the only difference is the use of the weights gn (Paul et al., 2016).
We use the Newton-Raphson method for finding the optimal pa-
rameters w by minimizing −log(p

(
w|TD

)
) (Bishop, 2006).

Our aim is to transfer the classifier trained on labelled source do-
main data to the target domain in an iterative procedure. Our
initial classifier is trained on training set TD

0
containing only

source data. In each further iteration i of DA a predefined number
ρE of source samples is removed from and a number ρA of semi-
labelled target samples is included into the current training data
set TD

i
. Thus, in iteration i, the current training data set TD

i

consists of a mixture of N i
S source samples and N i

T target sam-

ples: TD
i

= {(xS,r;CS,r; gS,r)}
NiS
r=1 ∪ {(xT,l; C̃T,l; gT,l)}

NiT
l=1.

The symbol C̃T,l denotes the semi-labels of the target samples,
which are determined by applying a criterion based on a knn
analysis. If the most frequent class label among the k nearest
neighbours of an unlabelled sample is consistent with the pre-
dicted label according to a current state of the LR classifier, it is
considered a candidate for inclusion into TD

i
. The ρA candi-

date samples having the shortest average distance to their k near-
est neighbours will be added to TD

i
. We first remove source

samples that are most distant from the decision boundary starting
with the samples showing inconsistent class labels and continuing
with samples with consistent labels.

At each iteration i, we have to define sample weights gi
TD
∈

[0, 1] for all training samples in TD
i
, where gi

TD
= {{giS,r}

NiS
r=1∪

{giT,l}
NiT
l=1}. For simplicity we refer to the weight of a sample as

gi
TD,n

, n ∈ {1, .., N i} with N i = |TDi| if it does not mat-
ter whether the sample is originally from the source or from the
target domain. The weight indicates the algorithm’s trust in the
correctness of the label of a training sample. The weight function
used for determining gi

TD,n
depends on the distance to the deci-

sion boundary: the higher that distance, the higher is the weight;
a parameter h models the rate of increase of the weight with the
distance (Paul et al., 2016). Having defined the current training
data set TD

i
and the weights, we retrain the LR classifier. This

leads to an updated parameter vector w and a change in the deci-
sion boundary. This new state of the classifier is the basis for the
definition of the training data set in the next iteration. Thus, we
gradually adapt the classifier to the distribution of the target data.

3.2 Multi-source logistic regression DA

The method described in section 3.1 was adapted for using data
from multiple source domains for training. To formally state our
problem we define our current training data set set as follows:

TD
i

=

|S|⋃
s=1

{(xSs,r;CSs,r; gSs,r)}
NiSs
r=1 ∪

|T|⋃
t=1

{(xT t,l; C̃T t,l; gT t,l)}
Ni
Tt

l=1 , (3)

where S or T describe a set of source or target data sets, respec-
tively, and |T| = 1. Again, we refer to a particular sample in
TD

i
by its index n in TD

i
if we are not interested in the domain

it comes from. We use the defined training data set TD
i

in our
multi-source DA approach, but we use different definitions of the
sample weights. One modification should decrease the weight
of uncertain samples, the other one is required to deal with prior
weights assigned to the individual source domains (cf. section 4).

3.2.1 Sample weights: The individual weights for the train-
ing samples should indicate the algorithm’s trust in the correct-
ness of the semi-labels, but our definition of weights in (Paul et
al., 2016) only depended on the distance of a sample from the
decision boundary. It may happen that a semi-label changes in
the iterative DA process, which would imply that the semi-label
is uncertain; semi-labels not having changed for many iterations
should be trusted more than others. Here we introduce an adapted
definition of the sample weights as shown in (Chang et al., 2002;
Bruzzone and Marconcini, 2009) to model the trust in a sample
in TD as a function of the number of iterations j for which its
semi-label has remained unchanged (Fig. 1):

g∗in = min

(
gin +

(gmax − gin)j2

(imax − 1)2
, gmax

)
. (4)

In Eq. 4, gin is the weight of sample n in the current adaptation
step i according to original distance-based weight function (Paul
et al., 2016), g∗in is the new weight of that sample, imax defines
the number of iterations for which the weight of a samples is al-
lowed to increase quadratically with j, and gmax is the maximum
possible sample weight. If no different source domains were con-
sidered, the weight for each training sample n in TD

i
would be

g∗in , i.e. the algorithm outlined in section 3.1 would be applied
using the new definition of weights.

Figure 1. Sample weight function according to Eq. (4), assuming
constant gin during the adaptation.

3.2.2 Domain weights: In the context of multi-source selec-
tion, we introduce an individual domain weight πSs for every
source domain s used in the DA process. The domain weights
allow us to obtain a synthesized source S̄ (section 4) from mul-
tiple sources, which is more similar to the target domain than
any of the original ones. The domain weights remain constant
during the adaptation procedure. For a sample n in the current
training set TD

i
taken from source domain s, the weight used in

the DA process will be gi
TD,n

= g∗in · πSs , where g∗in is defined
in Eq. (4), whereas a sample n with a semi-label taken from the
target domain will only have the weight g∗in . Thus, the weights
of the source-domain samples are affected by the similarity of the
corresponding domain to the target domain, placing a higher trust
into samples that are from more similar source domains.



4. MULTI-SOURCE SELECTION

The goal of source selection is to avoid negative transfer by choos-
ing a source which is, in some sense, similar to the target domain.
Naturally, one should prefer sources which produce similar deci-
sion boundaries as the target task. The selection criterion should
therefore be based on ε(hs,TDT ), i.e. the relative classification
error (∈ [0, 1]) on the target data, given the predictive function
hs of the source task:

S̄ = argmin
S∈S

ε(hS ,TDT ) . (5)

The main difficulty lies in the fact that estimating the classifi-
cation error requires the class labels of the target domain to be
known. Here, we introduce a theoretical framework and outline
an algorithm that allows us to quickly find approximate solutions
while requiring much less information. Our aim is the design of
two complementary domain distance functions which we will call
dSDA and dUDA. The function dSDA measures a supervised domain
distance in the sense that only class labels in the source domain
need to be known, whereas dUDA is completely unsupervised and
does not require any class labels at all. We will refer to dDA in
places where either of these functions could be used. Equation
(5) can then be approximated by S̄ = argminS∈S dDA(·). Our
main contribution is the extension of these domain distances to
the transfer from multiple sources while having a linear run-time
complexity. In addition, we also show how the critical hyperpa-
rameters of our domain distances can be tuned automatically in
an efficient manner.

4.1 Similarity of domains

We will derive our approximation of Eq. (5) in several steps. Us-
ing the results of Ben-David et al. (2007), an upper-bound for the
classification error can be given as

ε(hS ,TDT ) ≤ ε(hS ,TDS) + dA(TDT ,TDS) + γ . (6)

The first term corresponds to the classification error on the source
task. The term dA(TDT ,TDS), called A-distance, describes a
distance between the marginal feature distributions of the source
and target domains. The third term, γ, encapsulates to which
degree the DA assumption is held. The exact value can only be
computed if class labels in the target task are available, but for
related datasets this term should only take small positive values.
Assuming that γ is unknown yet constant over the dataset, the
upper bound gives us a definition for dSDA according to dSDA =
ε(hS ,TDS) +dA(TDT ,TDS). In the following we will define
dA and derive a more computationally friendly way to estimate
this distribution distance. In (Ben-David et al., 2007), the A-
distance is defined as

dA(TDT ,TDS) = 2(1− 2ε(hT⊥S ,TDT⊥S)) . (7)

The term ε(hT⊥S ,TDT⊥S) describes the classification error for
a classifier discriminating between feature vectors from the source
and target domains. In that paper, only signed linear classifiers
such as SVMs or logistic regression models were considered. Eval-
uation of the A-distance involves the training of such a classifier
for each candidate source, which has a high computational com-
plexity. Furthermore, linear separability of the target and source
domains is explicitely assumed. It is therefore desirable to find
an approximation to theA-distance that displays more favourable
properties. The Maximum Mean Discrepancy (MMD) was inde-
pendently proposed by Gretton et al. (2012) as a general distance
function between probability distributions:

S1

S2

S3

S4

S5

S̄

πS1

πS2

πS3

πS4

πS5 T

Figure 2. A synthesized source S̄ is formed as the convex
combination of candidate sources Ss.

d2MMD(TDT ,TDS) = E[(φ(xT )− φ(xS))2]

= E[k(xT ,x
′
T )]− 2E[k(xT ,xS)] + E[k(xS ,x

′
S)] . (8)

The MMD computes the distance between the means of the proba-
bility distributions in a Reproducing Hilbert Kernel Space (RKHS).
The RKHS is uniquely defined by either a feature space mapping
φ(x) or its kernel function k(x,y). It was shown by Sriperum-
budur et al. (2012) that the relation

dA(TDT ,TDS) ≈ 2 · dMMD(TDT ,TDS) (9)

holds for positive bounded kernels such as the Gaussian kernel:

kRBF(x,y) = exp

(
−‖x− y‖2

2σ2

)
. (10)

Evaluation of the MMD can be done by replacing the expectations
in Eq. (8) with their empirical estimates. A naive estimator would
have a run-time complexity of O(NT ·NS), which becomes un-
tenable for large training sets. A much faster linear-time esti-
mator dLMMD was proposed by Gretton et al. (2012). Assuming
M = NT = NS , it can be stated as:

d2LMMD(TDT ,TDS) =
2

M

[M/2∑
r=1

k(xT,2r,xT,2r−1)

−
M∑
r=1

k(xT,r,xS,r) +

M/2∑
r=1

k(xS,2r,xS,2r−1)
]
. (11)

Finally, replacing dA by 2 · dLMMD using Eq. (9) leads to the defi-
nition of our supervised domain distance

dSDA(TDT ,TDS) = ε(hS ,TDS) + 2dLMMD(TDT ,TDS)(12)

Assuming the classification error to be approximately constant
over all candidate sources, we obtain the unsupervised distance:

dUDA(TDT ,TDS) = 2dLMMD(TDT ,TDS) . (13)

4.2 Convex combination of domains

In general we can assume that none of the candidate source do-
mains S ∈ S is a perfect match for the target domain. Nonethe-
less, the target marginal distribution pT (x) might be much closer
to the subspace spanned by the convex combination of the source
marginal distributions (Fig. 2). Any point in this subspace rep-
resents a valid marginal distribution and can be parametrized as

pSπ (x) =

|S|∑
s=1

πSspSs(x) (14)



given a source weight vector π satisfying the constraints πSs ≥ 0,∑|S|
s πSs = 1. By definition (14), the distribution pSπ (x) is a

mixture of the source marginal distributions. The weighted train-
ing set TDSπ =

⋃|S|
s=1 {xSs,r;CSs,r;πSs}

NSs
r=1 is therefore a

representative sample from this distribution. The weights can
be intuitively understood to mean that each sample from source
Ss ∈ S is counted as πSs such samples. As an important inter-
mediate result, we propose an extension of the linear-time MMD

estimator (Eq. (11)) to a weighted union of source training sets:

d2LMMD(TDT ,TDSπ ) =
2

M

[M/2∑
r=1

k(xT,2r,xT,2r−1)

−
|S|∑
u=1

πSu
M∑
r=1

k(xT,r,xSu,r)

+

|S|∑
u=1

|S|∑
v=u+1

πSuπSv
M∑
r=1

k(xSu,r,xSv,r)

+

|S|∑
u=1

π2
Su

M/2∑
r=1

k(xSu,2r,xSu,2r−1)
]
.

(15)

In the next section we will present a fast greedy optimization
scheme that minimizes dDA w.r.t. π.

4.3 Fast synthesis of source domains by boosting

Convex representation problems, like in Eq. (14), are related to
dictionary learning. The Iterative Nearest Neighbor (INN) al-
gorithm (Timofte and Van Gool, 2012) is a recent method that
approximatively solves such problems in a greedy fashion. The
solution at iteration L is given as

pLS(x) =

L∑
l=1

wlpSl(x) , (16)

where the iteration weights are computed as

wl =
λ

(1 + λ)l
(17)

for a fixed parameter λ. In order to find the next solution pL+1
S (x),

we select a source which minimizes the representation error to the
target domain according to our domain distance:

SL+1 = argmin
S∈S

dDA

(
TDT , {xS,r;CS,r;wL+1}NSr=1

+

L⋃
l=1

{xSl,r;CSl,r;w
l}
NSl
r=1

)
. (18)

The same source may be chosen multiple times at different it-
erations. The source weights can be derived from the iteration
weights as follows:

πSs =

L∑
l=1

wl · 1{Sl=Ss} . (19)

Originally, the INN algorithm was designed to work on vectors
in euclidean spaces. When interpreted in the space of probability
distributions, the procedure has strong parallels to a non-adaptive
variant of the boosting paradigm, whose most well known imple-
mentation is AdaBoost (Schapire and Singer, 1999). Similar to
boosting, the synthesized source Sπ is a weighted combination
of weaker approximations. Also, the update step in Eq. (18) has
the effect to steer the optimization successively to priorize parts

Algorithm 1 Kernel Bandwidth Estimation
ϕ← 1.61803398875
(L,R)← (0, π/2)
(A,B)← (R− (R− L)/ϕ, L+ (R− L)/ϕ)
for i = 1..MaxIter do
fA ← d2LMMD(TDT ,TDS) with σ = tan(A)

fB ← d2LMMD(TDT ,TDS) with σ = tan(B)
if fA < 0 then
R← A

else if fB ≤ fA then
R← B

else
L← A

end if
(A,B)← (R− (R− L)/ϕ, L+ (R− L)/ϕ)

end for
return σmax = tan((L+ R)/2)

of the distribution which are not yet well represented while also
attenuating overrepresented parts.

The sum
∑∞
l=1 w

l approaches 1 while the iteration weights wl

will become smaller and smaller. We can therefore stop the algo-
rithm after L iterations such that

∑L
l=1 w

l > β while avoiding
large approximation errors. From Eq. (17) follows

L =

⌈
− log(1− β)

log(1 + λ)

⌉
. (20)

For typical parameter values β = 0.9, λ = 0.5 only L =
6 iterations are required. The run-time complexity of the en-
tire multi-source selection algorithm using dUDA can be given as
O(L3|S|M). The same result for our supervised variant dSDA

reads as O(L3|S|Mf(|S|M)) and additionally depends on the
term f(|S|M), which describes the complexity of the classifica-
tion algorithm used to estimate the first term in Eq. (12).

4.4 Kernel bandwidth estimation

The Gaussian kernel has a single hyperparameter σ, its band-
width. It was shown by Sriperumbudur et al. (2009) that the
discriminative power of the MMD is maximized by maximizing
dLMMD w.r.t σ:

d2LMMD(TDT ,TDS) = max
σ∈(0,∞)

d2LMMD(TDT ,TDS) . (21)

Using the results by Shestopaloff (2010), we can show that this
optimization problem has exactly one maximum at σmax and at
most one minimum at σmin. Furthermore, if σmin exists then σmax <
σmin holds. Finally, dLMMD will tend towards zero for both σ → 0
and σ → ∞. We propose to solve this optimization problem
using a Golden-Section-Search (GSS) (Press, 2007) (cf. Alg. 1).
The GSS searches the maximum of a strictly unimodal function.
We modified the GSS to handle cases where the MMD assumes
negative values. This can occur for very similar domains due to
small errors in the empirical estimates. The value range (0,∞) is
mapped to (0, π/2) using the atan function. In our experiments
the algorithm typically converged in less than 10 iterations.

4.5 Improving robustness by bootstrap aggregation

As all empirical estimators, our MMD estimator has a non-zero
estimation variance which may result in a suboptimal solution π.
We propose to reduce this variance by averaging π over multiple
independent runs of our multi-source selection algorithm. Each
run is performed on a bootstrap sample of the training sets TDT

and TDS . Bootstrap sampling describes a procedure where a
new sample is generated via independent draws with replacement
from an input sample. The statistical properties of bootstrap sam-
pling are described in detail in (Hesterberg et al., 2003).
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Figure 3. Example sections of orthophotos from all three datasets.

5. EXPERIMENTS

Our experimental evaluation is based on three datasets (cf. Fig. 3).
Two of them are the Vaihingen and Potsdam datasets from the IS-
PRS 2D semantic labelling contest (Wegner et al., 2016). The
Potsdam dataset was resampled from 5 cm to a ground sampling
distance (GSD) of 8 cm to reduce the computational burden. Only
patches for which a reference is available were used in our exper-
iments. A third dataset, referred to as 3CITYDS, consists of three
regions of German cities of varying size, degree of urbanization
and architecture (Buxtehude, Hannover, Nienburg) 1. This diver-
sity produces much more pronounced differences between do-
mains, thus exacerbating the effects of negative transfer when a
wrong source is selected. Each region covers an area of 2×2 km2

but is evenly split up into 9 patches. The reference data for the
3CITYDS dataset was generated manually based on the image
data. The properties of all datasets are further given in Table 1.

As it is the goal of these experiments to highlight the principles
and strengths of boosted unsupervised multi-source selection for
DA rather than to achieve optimal results, we only use two fea-
tures: normalized vegetation index (NDVI) and the normalized
digital surface model (nDSM). These features have been proven
sufficient to discriminate all object classes in our datasets. All
experiments are based on a pixel-wise classification of the input
data into the three object classes building, tree and ground. The
ground class includes all base-level surfaces and clutter objects.

A successful source selection should be able to find related sources
and maximize the expected positive transfer. The evaluation will
therefore consist of two parts. First we will analyze our proposed
multi-source selection method. Our method is run for each patch
to synthesize a source S̄ using all remaining patches of the dataset
as candidate sources. We examine several source selection strate-
gies. Single source selection and supervised multi-source selec-
tion minimizes the domain distance dSDA and utilizes labelled
samples from the source domains. Unsupervised multi-source se-
lection is based on the dUDA domain distance. The multi-source
methods only use the weighted combination of the three sources
which received the highest source weights. We compare these
methods to two simple reference methods: Random Source and
All Sources. Random Source selects a single source randomly
from all candidate sources. All Sources, on the other hand, as-
signs all candidate sources uniform source weights. In the first
set of experiments, we are mainly interested in the performance
of the synthesized source on the target task, so that classification
is performed using multi-class logistic regression without DA, but
using the source weights πSs to weight the samples (cf. Sec. 3).

In our second experiment we will enable the DA extension for our
classifier, applying it to a synthesized source S̄ generated by our
unsupervised multi-source selection algorihm using only the 1-3
sources featuring the largest source weights. We will show that S̄
is generally a better starting point for DA than a random source.

1Source: Extract from the geospatial data of the Lower
Saxony survey and cadastre administration, c© 2013

Multi-source selection and DA are applied using pixels on a reg-
ular grid of size 10 px− 30 px to reduce spatial dependency; the
grid size was adapted to the GSD and the patch size of the indi-
vidual datasets. For the logistic regression classifier, we applied a
polynomial expansion of degree 2. For the multi-source selection
we selected about 30% of the pixels per patch for each bootstrap
run. The parameters used for DA (Section 3) and multi-source
selection (Section 4) are given in Tab. 2. The DA parameters
were tuned empirically on the three datasets. The same parame-
ter values were used for all datasets without further tuning. The
multi-source selection parameters are non-critical and were set
to achieve a good tradeoff between speed and performance. As
multi-source selection has some random components, each exper-
iment is repeated ten times and we report average quality indices.

Dataset GSD Channels Patches Features Classes

Vaihingen 8 cm RGIR 16 2 3
Potsdam 8 cm RGBIR 23 2 3
3CITYDS 20 cm RGBIR 27 2 3

Table 1. Dataset properties.

Multi Source Selection

GSS MaxIter INN λ INN β Bootstrap Runs Bootstrap Size

10 0.5 0.9 10 5000

Domain Adaptation

σ0 σDA ρE ρA KNN k h imax gmax
P,S gmax

P,T

35 15 30 30 19 0.7 200 1.5 0.9

Table 2. Parameters.

5.1 Results and discussion

Figure 4 shows the evaluation of source selection without using
DA. We present percentile plots and the average performance
(Mean, Stdev) for each dataset separately. The percentile plots
show the cumulative distribution of ∆OA over all patches in a
dataset, where ∆OA is the difference in overall accuracy (OA) on
the target task when learned on a synthesized source compared to
training the classifier on a labelled target training set. The ∆OA

directly shows how much performance is lost by not having ac-
cess to class labels in the target domain. On all datasets, our
single source method outperforms random selection, while using
multiple weighted sources outperforms single source selection.
Supervised source selection is generally better than unsupervised
source selection, but the difference appears to be small on the
tested datasets. Furthermore, training the classifier on all source
patches is a competetive strategy on the Vaihingen and Potsdam
dataset. These datasets only cover a single survey region and ex-
hibit low variability between patches. For the more interesting
case that most candidate sources are expected to be only weakly
related to the target, this strategy falls behind our multi-source se-
lection methods, as seen on the 3CITYDS dataset. As expected,
random selection performs particularly bad under these circum-
stances (mean ∆OA: -10.8%), but this is compensated to a level
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Figure 4. Source selection results. ∆OA: difference in OA compared to a classifier based on target training data. Example for
interpretation (Vaihingen, All Sources): for 25% of the target patches the loss in OA is larger than 1% (∆OA < -1%).

that is comparable to the other datasets by multi-source selection.
A classifier trained on the source synthesized by our unsupervised
multi-source method only loses less than 3% in classification per-
formance over 83% of all patches from all datasets.

Figure 5 shows the DA results using a random source and the
1-3 best sources according to unsupervised multi-source selec-
tion. We also compared the OA on the target data with and with-
out enabling the DA extension in logistic regression; we report
∆DA, i.e. the mean difference in OA due to enabling DA over all
patches of a dataset. The test shows that the performance is im-
proved when using multi-source selection compared to random
selection. When only using the optimal source (DA1 ), DA on
average achieves a negative transfer, but when 2 or 3 sources
are combined, a positive transfer is achieved in all experiments
(∆DA>0). Whereas a Wilcoxon signed-rank test (Siegel, 1956)
indicates a positive transfer when using 2 or more sources at a
95% confidence level, the actual size of the improvement (< 1%)
is still disappointing. However, the results show that unsuper-
vised multi-source selection does indeed improve the prospects
of DA, although it does not currently incorporate prior knowledge
about specific properties of the DA method.

6. CONCLUSION

In this work, we presented two domain distances measures based
on the MMD. One of these distances requires labelled samples
in the source domain, the other one operates fully unsupervised.
We developed a multi-source selection method that synthesizes
a related source as a weighted combination of a set of candidate
sources, of which only a few may be related to the target. Our
fastest method has a linear run-time complexity in regard to the
number of candidate sources and the size of the training set and
is thus applicable to very large datasets. We also expanded an
existing DA method to cope with multple sources being assigned
different weights. Our experiments show that selecting the best
sources, the loss in classification performance when compared to
a classifier trained on target domain samples could be reduced
considerably, in particular in cases with a very heterogeneous ap-
pearance of objects. Additionally applying DA could achieve a
small positive transfer when using the weighted combination of
two or more sources selected by our unsupervised procedure.

In future work we want to improve our DA method and its inter-
play with source selection. The impact of richer feature spaces,

feature selection and more complex class structures still needs to
be evaluated. The experiments presented in Section 5 correspond
to a scenario where labelled training data are abundant from ear-
lier projects. In such a scenario, selecting a good source domain
compensates for most of the loss due to not labelling training data
in a new target domain, so that perhaps the additional impact of
DA must be expected to be small. We envision another applica-
tion scenario in which multi-source selection is applied to a set of
images when no labelled data is available. The results of source
selection could be used to determine an optimal subset of patches
that should be manually labelled in order to optimize classifica-
tion over all patches. Such a method could become a fast alter-
native to active learning approaches and could greatly reduce the
costs of manual labelling. With a smaller pool of source domains,
the impact of DA is expected to be larger than in our experiments.
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